Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(26): 44703-44719, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178534

RESUMO

Bound states in the continuum (BICs) with infinite quality factor (Q-factor) and significant field enhancement pave the way for realizing highly sensitive optical sensors with enhanced light-matter interactions on the nanoscale. However, current optical sensing methods are difficult to discriminate between isotropic and anisotropic media from resonance spectral lines, resulting in optical sensing methods still being limited to isotropic media. In this work, we demonstrate that BICs can be realized by modulating the period of structural units to convert BICs to QBICs without changing their space group symmetry, and propose a polarization-independent metasurfaces-based realization of highly sensitive refractive index sensors for isotropic and anisotropic media as well as discrimination. We propose a metasurface of tetrameric silicon nanoboxes with C4 symmetry as structural units to achieve the conversion of BICs to QBICs by modulating the period of structural units without changing the geometry of the structure. Two QBICs modes dominated by electric toroidal dipole and magnetic toroidal dipole are identified by multipolar decomposition and electromagnetic distribution calculations. Meanwhile, we realize the refractive index detection and resolution of isotropic and anisotropic media based on polarization-independent metasurfaces combined with isotropic and anisotropic media layers. Our work provides what we believe to be a new method for realizing the fast resolution and refractive index optical sensing of isotropic and anisotropic media, and offers new ideas for the design and application of polarization-independent metasurfaces.

2.
Mol Genet Genomics ; 293(1): 107-117, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28884289

RESUMO

The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Haplótipos/genética , Migração Humana , Ásia , China , Humanos , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...